Copied to
clipboard

G = C23.4D28order 448 = 26·7

4th non-split extension by C23 of D28 acting via D28/C7=D4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.4D28, C4.D4.D7, (C2×D4).6D14, (C2×C28).14D4, C23.D74C4, C23.4(C4×D7), (C22×Dic7)⋊2C4, (C22×C14).13D4, C72(C23.D4), C23⋊Dic7.3C2, C14.12(C23⋊C4), C22.13(D14⋊C4), (D4×C14).171C22, C23.18D14.4C2, C2.13(C23.1D14), (C2×C4).2(C7⋊D4), (C22×C14).4(C2×C4), (C7×C4.D4).1C2, (C2×C14).6(C22⋊C4), SmallGroup(448,33)

Series: Derived Chief Lower central Upper central

C1C22×C14 — C23.4D28
C1C7C14C2×C14C2×C28D4×C14C23.18D14 — C23.4D28
C7C14C2×C14C22×C14 — C23.4D28
C1C2C22C2×D4C4.D4

Generators and relations for C23.4D28
 G = < a,b,c,d,e | a2=b2=c2=1, d28=c, e2=ca=ac, ab=ba, dad-1=abc, ae=ea, dbd-1=ebe-1=bc=cb, cd=dc, ce=ec, ede-1=acd27 >

Subgroups: 396 in 68 conjugacy classes, 21 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, C23, C14, C14, C22⋊C4, C4⋊C4, M4(2), C22×C4, C2×D4, Dic7, C28, C2×C14, C2×C14, C23⋊C4, C4.D4, C22.D4, C56, C2×Dic7, C2×C28, C7×D4, C22×C14, C23.D4, Dic7⋊C4, C23.D7, C23.D7, C7×M4(2), C22×Dic7, D4×C14, C23⋊Dic7, C7×C4.D4, C23.18D14, C23.4D28
Quotients: C1, C2, C4, C22, C2×C4, D4, D7, C22⋊C4, D14, C23⋊C4, C4×D7, D28, C7⋊D4, C23.D4, D14⋊C4, C23.1D14, C23.4D28

Smallest permutation representation of C23.4D28
On 112 points
Generators in S112
(1 67)(2 96)(3 97)(4 70)(5 71)(6 100)(7 101)(8 74)(9 75)(10 104)(11 105)(12 78)(13 79)(14 108)(15 109)(16 82)(17 83)(18 112)(19 57)(20 86)(21 87)(22 60)(23 61)(24 90)(25 91)(26 64)(27 65)(28 94)(29 95)(30 68)(31 69)(32 98)(33 99)(34 72)(35 73)(36 102)(37 103)(38 76)(39 77)(40 106)(41 107)(42 80)(43 81)(44 110)(45 111)(46 84)(47 85)(48 58)(49 59)(50 88)(51 89)(52 62)(53 63)(54 92)(55 93)(56 66)
(2 30)(4 32)(6 34)(8 36)(10 38)(12 40)(14 42)(16 44)(18 46)(20 48)(22 50)(24 52)(26 54)(28 56)(58 86)(60 88)(62 90)(64 92)(66 94)(68 96)(70 98)(72 100)(74 102)(76 104)(78 106)(80 108)(82 110)(84 112)
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(57 85)(58 86)(59 87)(60 88)(61 89)(62 90)(63 91)(64 92)(65 93)(66 94)(67 95)(68 96)(69 97)(70 98)(71 99)(72 100)(73 101)(74 102)(75 103)(76 104)(77 105)(78 106)(79 107)(80 108)(81 109)(82 110)(83 111)(84 112)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 108 95 42)(2 41 68 79)(3 106 69 12)(4 11 98 77)(5 104 99 38)(6 37 72 75)(7 102 73 8)(9 100 103 34)(10 33 76 71)(13 96 107 30)(14 29 80 67)(15 94 81 56)(16 55 110 65)(17 92 111 26)(18 25 84 63)(19 90 85 52)(20 51 58 61)(21 88 59 22)(23 86 89 48)(24 47 62 57)(27 82 93 44)(28 43 66 109)(31 78 97 40)(32 39 70 105)(35 74 101 36)(45 64 83 54)(46 53 112 91)(49 60 87 50)

G:=sub<Sym(112)| (1,67)(2,96)(3,97)(4,70)(5,71)(6,100)(7,101)(8,74)(9,75)(10,104)(11,105)(12,78)(13,79)(14,108)(15,109)(16,82)(17,83)(18,112)(19,57)(20,86)(21,87)(22,60)(23,61)(24,90)(25,91)(26,64)(27,65)(28,94)(29,95)(30,68)(31,69)(32,98)(33,99)(34,72)(35,73)(36,102)(37,103)(38,76)(39,77)(40,106)(41,107)(42,80)(43,81)(44,110)(45,111)(46,84)(47,85)(48,58)(49,59)(50,88)(51,89)(52,62)(53,63)(54,92)(55,93)(56,66), (2,30)(4,32)(6,34)(8,36)(10,38)(12,40)(14,42)(16,44)(18,46)(20,48)(22,50)(24,52)(26,54)(28,56)(58,86)(60,88)(62,90)(64,92)(66,94)(68,96)(70,98)(72,100)(74,102)(76,104)(78,106)(80,108)(82,110)(84,112), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,108,95,42)(2,41,68,79)(3,106,69,12)(4,11,98,77)(5,104,99,38)(6,37,72,75)(7,102,73,8)(9,100,103,34)(10,33,76,71)(13,96,107,30)(14,29,80,67)(15,94,81,56)(16,55,110,65)(17,92,111,26)(18,25,84,63)(19,90,85,52)(20,51,58,61)(21,88,59,22)(23,86,89,48)(24,47,62,57)(27,82,93,44)(28,43,66,109)(31,78,97,40)(32,39,70,105)(35,74,101,36)(45,64,83,54)(46,53,112,91)(49,60,87,50)>;

G:=Group( (1,67)(2,96)(3,97)(4,70)(5,71)(6,100)(7,101)(8,74)(9,75)(10,104)(11,105)(12,78)(13,79)(14,108)(15,109)(16,82)(17,83)(18,112)(19,57)(20,86)(21,87)(22,60)(23,61)(24,90)(25,91)(26,64)(27,65)(28,94)(29,95)(30,68)(31,69)(32,98)(33,99)(34,72)(35,73)(36,102)(37,103)(38,76)(39,77)(40,106)(41,107)(42,80)(43,81)(44,110)(45,111)(46,84)(47,85)(48,58)(49,59)(50,88)(51,89)(52,62)(53,63)(54,92)(55,93)(56,66), (2,30)(4,32)(6,34)(8,36)(10,38)(12,40)(14,42)(16,44)(18,46)(20,48)(22,50)(24,52)(26,54)(28,56)(58,86)(60,88)(62,90)(64,92)(66,94)(68,96)(70,98)(72,100)(74,102)(76,104)(78,106)(80,108)(82,110)(84,112), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,108,95,42)(2,41,68,79)(3,106,69,12)(4,11,98,77)(5,104,99,38)(6,37,72,75)(7,102,73,8)(9,100,103,34)(10,33,76,71)(13,96,107,30)(14,29,80,67)(15,94,81,56)(16,55,110,65)(17,92,111,26)(18,25,84,63)(19,90,85,52)(20,51,58,61)(21,88,59,22)(23,86,89,48)(24,47,62,57)(27,82,93,44)(28,43,66,109)(31,78,97,40)(32,39,70,105)(35,74,101,36)(45,64,83,54)(46,53,112,91)(49,60,87,50) );

G=PermutationGroup([[(1,67),(2,96),(3,97),(4,70),(5,71),(6,100),(7,101),(8,74),(9,75),(10,104),(11,105),(12,78),(13,79),(14,108),(15,109),(16,82),(17,83),(18,112),(19,57),(20,86),(21,87),(22,60),(23,61),(24,90),(25,91),(26,64),(27,65),(28,94),(29,95),(30,68),(31,69),(32,98),(33,99),(34,72),(35,73),(36,102),(37,103),(38,76),(39,77),(40,106),(41,107),(42,80),(43,81),(44,110),(45,111),(46,84),(47,85),(48,58),(49,59),(50,88),(51,89),(52,62),(53,63),(54,92),(55,93),(56,66)], [(2,30),(4,32),(6,34),(8,36),(10,38),(12,40),(14,42),(16,44),(18,46),(20,48),(22,50),(24,52),(26,54),(28,56),(58,86),(60,88),(62,90),(64,92),(66,94),(68,96),(70,98),(72,100),(74,102),(76,104),(78,106),(80,108),(82,110),(84,112)], [(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(57,85),(58,86),(59,87),(60,88),(61,89),(62,90),(63,91),(64,92),(65,93),(66,94),(67,95),(68,96),(69,97),(70,98),(71,99),(72,100),(73,101),(74,102),(75,103),(76,104),(77,105),(78,106),(79,107),(80,108),(81,109),(82,110),(83,111),(84,112)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,108,95,42),(2,41,68,79),(3,106,69,12),(4,11,98,77),(5,104,99,38),(6,37,72,75),(7,102,73,8),(9,100,103,34),(10,33,76,71),(13,96,107,30),(14,29,80,67),(15,94,81,56),(16,55,110,65),(17,92,111,26),(18,25,84,63),(19,90,85,52),(20,51,58,61),(21,88,59,22),(23,86,89,48),(24,47,62,57),(27,82,93,44),(28,43,66,109),(31,78,97,40),(32,39,70,105),(35,74,101,36),(45,64,83,54),(46,53,112,91),(49,60,87,50)]])

46 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F7A7B7C8A8B14A14B14C14D14E14F14G···14L28A···28F56A···56L
order122224444447778814141414141414···1428···2856···56
size1124442828565656222882224448···84···48···8

46 irreducible representations

dim11111122222224448
type++++++++++-
imageC1C2C2C2C4C4D4D4D7D14C7⋊D4C4×D7D28C23⋊C4C23.D4C23.1D14C23.4D28
kernelC23.4D28C23⋊Dic7C7×C4.D4C23.18D14C23.D7C22×Dic7C2×C28C22×C14C4.D4C2×D4C2×C4C23C23C14C7C2C1
# reps11112211336661263

Matrix representation of C23.4D28 in GL6(𝔽113)

11200000
01120000
0015800
00859800
00098015
008598980
,
100000
010000
001000
000100
008101120
008100112
,
100000
010000
00112000
00011200
00001120
00000112
,
80220000
69910000
00101060
00001121
008301120
00111151120
,
106700000
8070000
0015080
00009815
0083112980
0020980

G:=sub<GL(6,GF(113))| [112,0,0,0,0,0,0,112,0,0,0,0,0,0,15,85,0,85,0,0,8,98,98,98,0,0,0,0,0,98,0,0,0,0,15,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,81,81,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,112],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112],[80,69,0,0,0,0,22,91,0,0,0,0,0,0,1,0,83,111,0,0,0,0,0,15,0,0,106,112,112,112,0,0,0,1,0,0],[106,80,0,0,0,0,70,7,0,0,0,0,0,0,15,0,83,2,0,0,0,0,112,0,0,0,8,98,98,98,0,0,0,15,0,0] >;

C23.4D28 in GAP, Magma, Sage, TeX

C_2^3._4D_{28}
% in TeX

G:=Group("C2^3.4D28");
// GroupNames label

G:=SmallGroup(448,33);
// by ID

G=gap.SmallGroup(448,33);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,224,141,36,422,184,346,297,851,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^28=c,e^2=c*a=a*c,a*b=b*a,d*a*d^-1=a*b*c,a*e=e*a,d*b*d^-1=e*b*e^-1=b*c=c*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*c*d^27>;
// generators/relations

׿
×
𝔽